Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
J Cancer ; 15(6): 1657-1667, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370384

RESUMO

Colorectal cancer (CRC) is the leading cause of cancer death, but little is known about its etiopathology. Aldo-keto reductase 1B10 (AKR1B10) protein is primarily expressed in intestinal epithelial cells, but lost in colorectal cancer tissues. This study revealed that AKR1B10 may not be a prognostic but an etiological factor in colorectal tumorigenesis. Using a tissue microarray, we investigated the expression of AKR1B10 in tumor tissues of 592 colorectal cancer patients with a mean follow-up of 25 years. Results exhibited that AKR1B10 protein was undetectable in 374 (63.13%), weakly positive in 146 (24.66%), and positive 72 (12.16%) of 592 tumor tissues. Kaplan-Meier analysis showed that AKR1B10 expression was not correlated with overall survival or disease-free survival. Similar results were obtained in various survival analyses stratified by clinicopathological parameters. AKR1B10 was not correlated with tumor T-pathology, N-pathology, TNM stages, cell differentiation and lymph node/regional/distant metastasis either. However, AKR1B10 silencing in culture cells enhanced carbonyl induced protein and DNA damage; and in ulcerative colitis tissues, AKR1B10 deficiency was associated acrolein-protein lesions. Together this study suggests that AKR1B10 downregulation may not be a prognostic but a carcinogenic factor of colorectal cancer.

2.
J Gastroenterol ; 58(10): 1030-1042, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37500927

RESUMO

BACKGROUND AND AIMS: A large-scale multicenter study validated aldo-keto reductase 1B10 (AKR1B10) as a new serum marker of hepatocellular carcinoma (HCC). This study aimed to evaluate the prognostic value of serum AKR1B10 in HCC. METHODS: 273 naïve HCC patients enrolled for serum AKR1B10 tests were followed up for 2 years. Survival and clinical data were collected. Kaplan-Meier survival analysis and log-rank tests were used to estimate correlation of patient survival with serum AKR1B10. Univariate and multivariate COX regression analyses were used to evaluate the prognostic value of serum AKR1B10 level independently or in combination with other clinicopathological factors. α-fetoprotein (AFP) was analyzed in parallel for comparison. RESULTS: Serum AKR1B10 associated with tumor stage (p = 0.012), size (p = 0.004), primary tumor number (p = 0.019), and Child-Pugh classification (p = 0.003). HCC patients with a high level of serum AKR1B10 (≥ 267.9 pg/ml) had median survival (MS) of 25 months (95% confidence interval [CI] 20.788-29.212) vs. MS of 34 months (CI 28.911-39.089) in patients with normal serum AKR1B10 (p < 0.001). Univariate and multivariate COX regression analyses showed that serum AKR1B10 level was an unfavorable prognostic marker of HCC independently (HR 1.830, 95% CI 1.312-2.552; p < 0.001) or in combination with other clinical factors (HR 1.883, 95% CI 1.264-2.806; p = 0.002), such as TNM stage, tumor size and portal invasion. In the same cohort of HCC patients, AFP exhibited prognostic value at a cut-off of 400 ng/ml, but not at 20 ng/ml and 200 ng/ml. CONCLUSIONS: Serum AKR1B10 is a new prognostic marker of HCC, better than AFP.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Aldo-Ceto Redutases , alfa-Fetoproteínas , Neoplasias Hepáticas/patologia , Aldeído Redutase , Biomarcadores Tumorais/análise , Prognóstico
3.
J Int Med Res ; 51(6): 3000605231179317, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37389562

RESUMO

OBJECTIVE: Aldo-keto reductase family 1 member B10 (AKR1B10) is a protein that is produced and secreted by a significant number of breast cancers. However, a potential confounder to the use of AKR1B10 as a tumor marker is its elevation in patients given cytotoxic chemotherapy. We therefore conducted a prospective study to analyze AKR1B10 levels in patients with breast cancer receiving neoadjuvant cytotoxic chemotherapy. METHODS: The study enrolled 10 patients from November 2015 to July 2017. All patients had locally advanced, but non-metastatic, breast cancer, and they received neoadjuvant chemotherapy followed by surgery. Serum AKR1B10 levels and tumor imaging were assessed before, during, and after chemotherapy. RESULTS: No increase in serum AKR1B10 levels was noted in patients receiving chemotherapy whose levels were elevated at diagnosis. CONCLUSION: The findings are complex, but the overall data suggest that AKR1B10 is suitable as a tumor marker in patients with elevated levels at the time of diagnosis.


Assuntos
Membro B10 da Família 1 de alfa-Ceto Redutase , Neoplasias da Mama , Humanos , Feminino , Estudos Prospectivos , Neoplasias da Mama/tratamento farmacológico , Transporte Biológico , Biomarcadores Tumorais
4.
J Exp Clin Cancer Res ; 42(1): 59, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899389

RESUMO

Metabolic reprogramming is one of the hallmarks of cancer. As nutrients are scarce in the tumor microenvironment (TME), tumor cells adopt multiple metabolic adaptations to meet their growth requirements. Metabolic reprogramming is not only present in tumor cells, but exosomal cargos mediates intercellular communication between tumor cells and non-tumor cells in the TME, inducing metabolic remodeling to create an outpost of microvascular enrichment and immune escape. Here, we highlight the composition and characteristics of TME, meanwhile summarize the components of exosomal cargos and their corresponding sorting mode. Functionally, these exosomal cargos-mediated metabolic reprogramming improves the "soil" for tumor growth and metastasis. Moreover, we discuss the abnormal tumor metabolism targeted by exosomal cargos and its potential antitumor therapy. In conclusion, this review updates the current role of exosomal cargos in TME metabolic reprogramming and enriches the future application scenarios of exosomes.


Assuntos
Exossomos , Neoplasias , Humanos , Microambiente Tumoral , Comunicação Celular , Neoplasias/patologia , Exossomos/metabolismo
5.
Front Immunol ; 13: 1042549, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518763

RESUMO

Background: Dysfunction of intestinal epithelial cells (IECs) promotes inflammatory bowel disease (IBD) and associated colorectal cancer (CRC). AKR1B8 deficiency impairs the IEC barrier function, leading to susceptibility to chronic colitis induced by dextran sulfate sodium (DSS), yet it remains unclear how acute colitic response is in AKR1B8 deficient mice. Methods: AKR1B8 knockout (KO) and littermate wild type mice were exposed to oral 1.5% DSS in drinking water for 6 days. Disease activity index and histopathological inflammation scores by H&E staining were calculated for colitic severity; permeability was assessed by fluorescein isothiocyanate dextran (FITC-Dextran) probes and bacterial invasion and transmission were detected by in situ hybridization in mucosa or by culture in blood agar plates. Immunofluorescent staining and flow cytometry were applied for immune cell quantification. Toll-like receptor 4 (TLR4) and target gene expression was analyzed by Western blotting and qRT-PCR. Results: AKR1B8 KO mice developed severe acute colitis at a low dose (1.5%) of DSS in drinking water compared to wild type controls. In AKR1B8 KO mice, FITC-dextran was penetrated easily and luminal bacteria invaded to the surface of IEC layer on day 3, and excessive bacteria translocated into the colonic mucosa, mesenteric lymph nodes (MLNs) and liver on day 6, which was much mild in wild type mice. Hyper-infiltration of neutrophils and basophils occurred in AKR1B8 KO mice, and monocytes in spleen and macrophages in colonic mucosa increased markedly compared to wild type mice. TLR4 signaling in colonic epithelial cells of AKR1B8 KO mice was activated to promote great IL-1ß and IL-6 expression compared to wild type mice. Conclusions: AKR1B8 deficiency in IECs drives severe acute colitis induced by DSS at a low dose through activation of the innate immunity, being a novel pathogenic factor of colitis.


Assuntos
Oxirredutases do Álcool , Colite , Imunidade Inata , Animais , Camundongos , Bactérias , Colite/induzido quimicamente , Colite/genética , Sulfato de Dextrana/toxicidade , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor 4 Toll-Like , Oxirredutases do Álcool/deficiência , Oxirredutases do Álcool/genética
6.
Biotechniques ; 73(6): 289-296, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36401550

RESUMO

Whether protein samples should be pretreated to remove nonspecific binding proteins in co-immunoprecipitation (CO-IP) is controversial. In this work, nonspecific binding of proteins to agarose beads was found to be greater than that to magnetic beads. The nonspecific binding was increased with the decrease of ion concentrations but reduced by Nonidet P40. Western blot indicated that p65 and ß-actin were present as nonspecifically bound protein to the beads. p53 and ß-actin were present in the CO-IP precipitates of nuclear proteins but pretreatment cleared the nonspecifically pulled down p53 and ß-actin. These data suggest that magnetic beads are better for CO-IP, but preclearing is necessary to minimize false positive regardless of which bead is used, particularly for nuclear proteins.


Assuntos
Actinas , Proteínas de Transporte , Proteínas de Transporte/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Imunoprecipitação , Ligação Proteica
7.
Front Pharmacol ; 13: 960140, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304153

RESUMO

In recent years, small intestine as a key target in the treatment of Inflammatory bowel disease caused by NSAIDs has become a hot topic. Sanguinarine (SA) is one of the main alkaloids in the Macleaya cordata extracts with strong pharmacological activity of anti-tumor, anti-inflammation and anti-oxidant. SA is reported to inhibit acetic acid-induced colitis, but it is unknown whether SA can relieve NSAIDs-induced small intestinal inflammation. Herein, we report that SA effectively reversed the inflammatory lesions induced by indomethacin (Indo) in rat small intestine and IEC-6 cells in culture. Our results showed that SA significantly relieved the symptoms and reversed the inflammatory lesions of Indo as shown in alleviation of inflammation and improvement of colon macroscopic damage index (CMDI) and tissue damage index (TDI) scores. SA decreased the levels of TNF-α, IL-6, IL-1ß, MDA and LDH in small intestinal tissues and IEC-6 cells, but increased SOD activity and ZO-1 expression. Mechanistically, SA dose-dependently promoted the expression of Nrf2 and HO-1 by decreasing Keap-1 level, but inhibited p65 phosphorylation and nuclear translocation in Indo-treated rat small intestine and IEC-6 cells. Furthermore, in SA treated cells, the colocalization between p-p65 and CBP in the nucleus was decreased, while the colocalization between Nrf2 and CBP was increased, leading to the movement of gene expression in the nucleus to the direction of anti-inflammation and anti-oxidation. Nrf2 silencing blocked the effects of SA. Together our results suggest that SA can significantly prevent intestinal inflammatory lesions induced by Indo in rats and IEC-6 cells through regulation of the Nrf2 pathway and NF-κBp65 pathway.

8.
Molecules ; 27(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35889273

RESUMO

Curcumin is the most important active component in turmeric extracts. Curcumin, a natural monomer from plants has received a considerable attention as a dietary supplement, exhibiting evident activity in a wide range of human pathological conditions. In general, curcumin is beneficial to human health, demonstrating pharmacological activities of anti-inflammation and antioxidation, as well as antitumor and immune regulation activities. Curcumin also presents therapeutic potential in neurodegenerative, cardiovascular and cerebrovascular diseases. In this review article, we summarize the advancements made in recent years with respect to curcumin as a biologically active agent in malignant tumors, Alzheimer's disease (AD), hematological diseases and viral infectious diseases. We also focus on problems associated with curcumin from basic research to clinical translation, such as its low solubility, leading to poor bioavailability, as well as the controversy surrounding the association between curcumin purity and effect. Through a review and summary of the clinical research on curcumin and case reports of adverse effects, we found that the clinical transformation of curcumin is not successful, and excessive intake of curcumin may have adverse effects on the kidneys, heart, liver, blood and immune system, which leads us to warn that curcumin has a long way to go from basic research to application transformation.


Assuntos
Doença de Alzheimer , Curcumina , Doença de Alzheimer/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Disponibilidade Biológica , Curcumina/farmacologia , Curcumina/uso terapêutico , Humanos
9.
Life Sci ; 300: 120565, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35461838

RESUMO

Triple-negative breast cancers (TNBCs) are now acknowledged as a collection of diseases encompassing distinct histological plasticity, multi-tier molecular heterogeneity, as well as different outcomes. Despite decades of efforts, the molecular subtyping strategy has been theoretical, and target therapies based on molecular alternations barely improve survival rates of TNBC patients, and thus traditional chemotherapy remains the standard of care in clinic. The Wnt signaling is an evolutionarily conserved signaling pathway, playing critical roles in embryogenesis and neoplastic disease. The dysregulation of Wnt signaling pathway endows cancer cells with stem cell-like capacities of self-renewal, cell proliferation and differentiation, thus exerting crucial roles in tumorigenesis and therapy responses. Recently, the gene expression assays and genomic sequencing have demonstrated that the dysregulation of Wnt signaling is associated with progression of TNBCs, particularly with metastasis, relapse and therapy resistance. In this review, we highlight the dysregulation of Wnt signaling in TNBCs and its potential biological roles in molecular subtyping and stemness traits of specific subtypes, as well as its crosstalk with ncRNAs in regulation of the biological features of TNBCs, aiming to update this important oncogenic signaling pathway in TNBCs.


Assuntos
Neoplasias de Mama Triplo Negativas , Carcinogênese/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Recidiva Local de Neoplasia/genética , RNA não Traduzido , Neoplasias de Mama Triplo Negativas/patologia , Via de Sinalização Wnt/genética
10.
Front Oncol ; 12: 727505, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35280770

RESUMO

Background: Aldo-keto reductase 1B10 (AKR1B10) is a secretory protein that is upregulated in breast cancer. Objective: This case-controlled pilot study evaluated the serum level of AKR1B10 in healthy women and patients with a localized or metastatic breast cancer. Methods: AKR1B10 levels were measured by ELISA and IHC in several patient cohorts. Results: Our data showed that serum AKR1B10 was significantly elevated in patients with localized (6.72 ± 0.92 ng/ml) or metastatic (7.79 ± 1.13 ng/ml) disease compared to cancer-free healthy women (1.69 ± 0.17 ng/ml) (p<0.001); the serum AKR1B10 was correlated with its expression in tumor tissues, but not with the tumor burden, molecular subtypes or histological stages. After surgical removal of primary tumors, the serum AKR1B10 was rapidly decreased within 3 days and plateaued at a level similar to that of healthy controls in most patients. ROC curve analysis suggested the optimal diagnostic cut-off value of serum AKR1B10 at 3.456 ng/ml with AUC 0.9045 ± 0.0337 (95% CI 0.8384 - 0.9706), sensitivity 84.75% (95% CI 73.01% to 92.78%), and specificity 93.88% (95% CI 83.13% to 98.72%). Conclusions: These data indicate the potential value of serum AKR1B10 as a biomarker of breast cancer.

11.
J Cancer ; 13(1): 174-183, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34976181

RESUMO

Lung cancer is the most common malignancy, being a serious threat of human lives. The incidence and mortality of lung cancer has been increasing rapidly in the past decades. Although the development of new therapeutic modes, such as target therapy, the overall survival rate of lung cancer remains low. It is urgent to advance the understanding of molecular oncology and find novel biomarkers and targets for the early diagnosis, treatment, and prognostic prediction of lung cancer. Long non-coding RNAs (lncRNAs) are non-protein coding RNA transcripts that are more than 200 nucleotides in length. LncRNAs exert diverse biological functions by regulating gene expressions at transcriptional, translational, and post-translational levels. In the past decade, it has been shown that lncRNAs are extensively involved in the pathogenesis of various diseases, including lung cancer. In this review, we highlighted the lncRNAs characterized in lung cancer and discussed their translational potential in lung cancer clinics.

12.
Adv Exp Med Biol ; 1316: 191-211, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33740251

RESUMO

Immune checkpoints are essential for the regulation of immune cell functions. Although the abrogation of immunosurveillance of tumor cells is known, the regulators of immune checkpoints are not clear. Lipid metabolism is one of the important metabolic activities in organisms. In lipid metabolism, a large number of metabolites produced can regulate the gene expression and activation of immune checkpoints through various pathways. In addition, increasing evidence has shown that lipid metabolism leads to transient generation or accumulation of toxic lipids that result in endoplasmic reticulum (ER) stress and then regulate the transcriptional and posttranscriptional modifications of immune checkpoints, including transcription, protein folding, phosphorylation, palmitoylation, etc. More importantly, the lipid metabolism can also affect exosome transportation of checkpoints and the degradation of checkpoints by affecting ubiquitination and lysosomal trafficking. In this chapter, we mainly empathize on the roles of lipid metabolism in the regulation of immune checkpoints, such as gene expression, activation, and degradation.


Assuntos
Metabolismo dos Lipídeos , Resposta a Proteínas não Dobradas , Estresse do Retículo Endoplasmático , Metabolismo dos Lipídeos/genética , Fosforilação , Dobramento de Proteína
13.
Front Cell Dev Biol ; 9: 632805, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33644071

RESUMO

Aldo-keto reductase 1B10 (AKR1B10) is downregulated in human ulcerative colitis (UC) and colorectal cancer, being a potential pathogenic factor of these diseases. Aldo-keto reductase 1B8 (AKR1B8) is the ortholog in mice of human AKR1B10. Targeted AKR1B8 deficiency disrupts homeostasis of epithelial self-renewal and leads to susceptibility to colitis and carcinogenesis. In this study, we found that in AKR1B8 deficient mice, Muc2 expression in colon was diminished, and permeability of colonic epithelium increased. Within 24 h, orally administered FITC-dextran penetrated into mesenteric lymph nodes (MLN) and liver in AKR1B8 deficient mice, but not in wild type controls. In the colon of AKR1B8 deficient mice, neutrophils and mast cells were markedly infiltrated, γδT cells were numerically and functionally impaired, and dendritic cell development was altered. Furthermore, Th1, Th2, and Th17 cells decreased, but Treg and CD8T cells increased in the colon and MLN of AKR1B8 deficient mice. In colonic epithelial cells of AKR1B8 deficient mice, p-AKT (T308 and S473), p-ERK1/2, p-IKBα, p-p65 (S536), and IKKα expression decreased, accompanied with downregulation of IL18 and CCL20 and upregulation of IL1ß and CCL8. These data suggest AKR1B8 deficiency leads to abnormalities of intestinal epithelial barrier and immunity in colon.

14.
Cell Biosci ; 10: 87, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32699605

RESUMO

The correct folding is a key process for a protein to acquire its functional structure and conformation. Prefoldin is a well-known chaperone protein that regulates the correct folding of proteins. Prefoldin plays a crucial role in the pathogenesis of common neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, and Huntington's disease). The important role of prefoldin in emerging fields (such as nanoparticles, biomaterials) and tumors has attracted widespread attention. Also, each of the prefoldin subunits has different and independent functions from the prefoldin complex. It has abnormal expression in different tumors and plays an important role in tumorigenesis and development, especially c-Myc binding protein MM-1. MM-1 can inhibit the activity of c-Myc through various mechanisms to regulate tumor growth. Therefore, an in-depth analysis of the complex functions of prefoldin and their subunits is helpful to understand the mechanisms of protein misfolding and the pathogenesis of diseases caused by misfolded aggregation.

15.
J Exp Clin Cancer Res ; 39(1): 67, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32299469

RESUMO

Tumor microenvironment (TME) is the internal environment in which tumor cells survive, consisting of tumor cells, fibroblasts, endothelial cells, and immune cells, as well as non-cellular components, such as exosomes and cytokines. Exosomes are tiny extracellular vesicles (40-160nm) containing active substances, such as proteins, lipids and nucleic acids. Exosomes carry biologically active miRNAs to shuttle between tumor cells and TME, thereby affecting tumor development. Tumor-derived exosomal miRNAs induce matrix reprogramming in TME, creating a microenvironment that is conducive to tumor growth, metastasis, immune escape and chemotherapy resistance. In this review, we updated the role of exosomal miRNAs in the process of TME reshaping.


Assuntos
Exossomos/metabolismo , MicroRNAs/metabolismo , Humanos , Microambiente Tumoral
16.
Molecules ; 24(22)2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31752145

RESUMO

Curcumin is an anticancer agent, but adverse effects and low bioavailability are its main drawbacks, which drives efforts in chemical modifications of curcumin. This study evaluated antiproliferative activity and cancer cell selectivity of a curcumin derivative, curcumin nicotinate (CN), in which two niacin molecules were introduced. Our data showed that CN effectively inhibited proliferation and clonogenic growth of colon (HCT116), breast (MCF-7) and nasopharyngeal (CNE2, 5-8F and 6-10B) cancer cells with IC50 at 27.7 µM, 73.4 µM, 64.7 µM, 46.3 µM, and 31.2 µM, respectively. In cancer cells, CN induced apoptosis and cell cycle arrest at G2/M phase through a p53-mediated mechanism, where p53 was activated, p21 and pro-apoptotic proteins Bid and Bak were upregulated, and PARP was cleaved. In non-transformed human mammary epithelial cells MCF10A, CN at 50 µM had no cytotoxicity and p53 was not activated, but curcumin at 12.5 µM activated p53 and p21 and inhibited MCF10A cell growth. These data suggest that CN inhibits cell growth and proliferation through p53-mediated apoptosis and cell cycle arrest with cancer cell selectivity.


Assuntos
Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Curcumina/análogos & derivados , Niacina/análogos & derivados , Proteína Supressora de Tumor p53/metabolismo , Proliferação de Células/efeitos dos fármacos , Curcumina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Células MCF-7 , Niacina/farmacologia
17.
J Cancer ; 10(9): 2025-2034, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31205563

RESUMO

Long non-coding RNAs (lncRNAs) are non-coding RNAs longer than 200 nucleotides that function as regulatory factors in many human diseases, including cancer. However, majority of lncRNAs remain to be characterized. In this study, we characterized a novel lncRNA transcript, named UNC5B antisense RNA1 (UASR1). UASR1 is 647bp in length consisting of two exons. This lncRNA is an antisense of intron 1 of unc-5 netrin receptor B (UNC5B) gene. In breast cancer tissues, UASR1 was upregulated. Ectopic expression of UASR1 promoted proliferation and clonogenic growth of breast cancer cells MCF7 and MDA-MB-231. The migration of these cells also increased as demonstrated by wound healing and transwell assays. In contrast, silencing of UASR1 suppressed cell proliferation and migration. Further studies showed that UASR1 activated AKT and AKT-mediated mTOR signaling pathway to stimulate cell proliferation and growth. In these cells, active pAKT, pTSC2, p4EBP1 and pp70S6K were increased. Taken together, our data suggest that UASR1 plays an oncogenic role in breast cancer cells through activation of the AKT/mTOR signaling pathway, being a novel RNA oncogene.

18.
Cancer Lett ; 459: 30-40, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31128213

RESUMO

Phosphatidylinositol 3-kinase (PI3K)/AKT pathway regulates cell growth, proliferation, survival, mobility and invasion. Mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway is also an important mitogenic signaling pathway involved in various cellular progresses. AKT, also named protein kinase B (PKB), is a primary mediator of the PI3K signaling pathway; and ERK at the end of MAPK signaling is the unique substrate and downstream effector of mitogen-activated protein/extracellular signal-regulated kinase (MEK). The AKT and ERK signaling are both aberrantly activated in a wide range of human cancers and have long been targeted for cancer therapy, but the clinical benefits of these targeted therapies have been limited due to complex cross-talk. Novel strategies, such as AKT/ERK dual inhibitors, may be needed.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Neoplasias/patologia , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ensaios Clínicos Controlados Aleatórios como Assunto , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Hepatology ; 69(6): 2489-2501, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30672601

RESUMO

Aldo-keto reductase family 1 member B10 (AKR1B10) is a secretory protein overexpressed in hepatocellular carcinoma (HCC). We aimed to evaluate AKR1B10 as a serum marker for detection of HCC. Herein, we conducted a cohort study that consecutively enrolled 1,244 participants from three independent hospitals, including HCC, healthy controls (HCs), benign liver tumors (BLTs), chronic hepatitis B (CHB), and liver cirrhosis (LC). Serum AKR1B10 was tested by time-resolved fluorescent assays. Data were plotted for receiver operating characteristic (ROC) curve analyses. Alpha-fetoprotein (AFP) was analyzed for comparison. An exploratory discovery cohort demonstrated that serum AKR1B10 increased in patients with HCC (1,567.3 ± 292.6 pg/mL; n = 69) compared with HCs (85.7 ± 10.9 pg/mL; n = 66; P < 0.0001). A training cohort of 519 participants yielded an optimal diagnostic cutoff of serum AKR1B10 at 267.9 pg/mL. When ROC curve was plotted for HCC versus all controls (HC + BLT + CHB + LC), serum AKR1B10 had diagnostic parameters of the area under the curve (AUC) 0.896, sensitivity 72.7%, and specificity 95.7%, which were better than AFP with AUC 0.816, sensitivity 65.1%, and specificity 88.9%. Impressively, AKR1B10 showed promising diagnostic potential in early-stage HCC and AFP-negative HCC. Combination of AKR1B10 with AFP increased diagnostic accuracy for HCC compared with AKR1B10 or AFP alone. A validation cohort of 522 participants confirmed these findings. An independent cohort of 68 patients with HCC who were followed up showed that serum AKR1B10 dramatically decreased 1 day after operation and was nearly back to normal 3 days after operation. Conclusion: AKR1B10 is a potent serum marker for detection of HCC and early-stage HCC, with better diagnostic performance than AFP.


Assuntos
Membro B10 da Família 1 de alfa-Ceto Redutase/sangue , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/patologia , Adulto , Biomarcadores Tumorais , Biópsia por Agulha , Carcinoma Hepatocelular/diagnóstico , Estudos de Casos e Controles , China , Feminino , Hospitais Universitários , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/diagnóstico , Masculino , Pessoa de Meia-Idade , Curva ROC , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Am J Cancer Res ; 9(12): 2730-2748, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31911858

RESUMO

Aldo-keto reductase 1B10 (AKR1B10), a member of aldo-keto reductase superfamily, contributes to detoxification of xenobiotics and metabolization of physiological substrates. Although increased expression of AKR1B10 was found in hepatocellular carcinoma (HCC), the role of AKR1B10 in the development of HCC remains unclear. This study aims to illustrate the role of AKR1B10 in hepatocarcinogenesis based on its intrinsic oxidoreduction abilities. HCC cell lines with AKR1B10 overexpression or knockdown were treated with doxorubicin or hydrogen peroxide to determinate the influence of aberrant AKR1B10 expression on cells' response to oxidative stress. Using Akr1b8 (the ortholog of human AKR1B10) knockout mice, diethylnitrosamine (DEN) induced liver injury, chronic inflammation and hepatocarcinogenesis were explored. Clinically, the pattern of serum AKR1B10 relevant to disease progression was investigated in a patient cohort with chronic hepatitis B (n=30), liver cirrhosis (n=30) and HCC (n=40). AKR1B10 expression in HCC tissues was analyzed using both the TCGA database (n=371) and our collected HCC samples (n=67). AKR1B10 overexpression reduced hepatocyte injury while AKR1B10 knockdown augmented reactive oxygen species (ROS) accumulation and apoptotic cell death. Consistently, Akr1b8 deficiency in mice promoted DEN-induced hepatocyte damage and liver inflammation characterized by increased phospho-H2AX, serum alanine aminotransferase, interleukin-6 and tumor necrosis factor alpha level, myeloid cell infiltration and led to more severe hepatocarcinogenesis and metastasis compared with wild type mice due to significant alteration on detoxification and oxidoreduction. AKR1B10 was compensatory expressed and gradually upregulated in the process of liver disease progression in HCC and increased oxidative stress upregulated AKR1B10 through NRF2. Our results here suggested that through oxidoreduction and detoxification, AKR1B10 played an important role in protecting hepatocytes from damage induced by ROS. Deficiency of AKR1B10 might accelerate hepatotoxin and inflammation-associated hepatocarcinogenesis. AKR1B10 expression elevation in HCC could be a result of compensatory upregulation, rather than a driver of malignant transformation during the development of HCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA